На главную домой советы по ремонту квартиры
Поиск по сайту
Список кабинетов || Что это за доктор? || Записаться на прием

Основное меню


Технологии выполнения работ


Диагностика и лечение


Инженерные сети и коммуникации


Элементы конструкции


Расчет конструкций


Помещения


Встраиваемая техника


Строительные и отделочные материалы


Дизайн




Модуль упругости бетона

При расчетах бетонных и железобетонных конструкций по второй группе предельных состояний, в частности при определении прогибов, необходимо знать модуль упругости E (модуль Юнга) бетона при сжатии. При этом следует различать начальный Eb и приведенный Eb1 модули упругости.

Факторы, влияющие на значение расчетного модуля упругости

Более подробно сущность модуля упругости, предела пропорциональности, предела прочности, нормальных напряжений, деформаций и других понятий рассматривается отдельно. Здесь лишь отметим, что для материалов, у которых предел пропорциональности незначительно меньше предела текучести, можно использовать линейную деформационную модель. Т.е. предполагать деформации прямо пропорциональными нормальным напряжениям.

Примером таких материалов являются стали различных марок. А вот бетон к таким материалам не относится. Более того, у бетона нет ярко выраженного предела пропорциональности и предела текучести. Диаграмма напряжений бетона при постепенном загружении выглядит приблизительно так:

диаграмма напряжений бетона

Рисунок 324.1

Однако это далеко не единственная из возможных диаграмм напряжений бетона, так как на значение деформаций ε будут влиять не только нормальные напряжения σ, возникающие в поперечных сечениях, но и множество других факторов:

1. Класс бетона

Начальный модуль упругости бетона зависит от класса бетона. Значение начального модуля упругости можно определить по следующей таблице:

Таблица 1. Начальные модули упругости бетона (согласно СП 52-101-2003)

модули упругости бетона по новым нормам

2. Время приложения нагрузки

При кратковременном действии нагрузки деформации бетона почти прямо пропорциональны напряжениям, кроме того такие деформации остаются упругими. При расчетах на кратковременное действие нагрузки (до 1-2 часов) значение приведенного модуля упругости на участках без трещин определяется по формуле:

Ebп = φb1Eb (324.1)

где φb1 = 0.85 - для тяжелых, мелкозернистых и легких бетонов на плотном мелком заполнителе; = 0.7 - для поризованных и легких бетонов на пористом мелком заполнителе.

При длительном действии нагрузки того же значения, деформации начинают увеличиваться до некоторого предела, например при σ = Rb - до точки 1 на диаграмме напряжений. После снятия нагрузки пластические деформации εпл останутся (потому они пластическими и называются), а при повторном загружении до указанного предела деформации будут прямо пропорциональны напряжениям. Процесс нарастания пластических деформаций с течением времени при постоянных нормальных напряжениях называется ползучестью бетона.

Так как при длительном действии нагрузки диаграмма напряжений стремится к показанной на рисунке 324.1, то при расчетах необходимо учитывать нелинейность изменения деформаций при линейно изменяющихся напряжениях. К тому же в изгибаемых элементах нелинейному изменению деформаций препятствует сам материал. Напомню, нормальные напряжения в поперечных сечениях изгибаемых элементов прямо пропорциональны расстоянию от центра тяжести сечения, через который проходит нейтральная линия, до рассматриваемой точки. Таким образом различные слои бетона, работающие совместно, приводят к частичному перераспределению деформаций по высоте элемента, при этом перераспределенную эпюру деформаций можно условно рассматривать как линейную:

изменение деформаций по высоте сечения

Рисунок 324.2

На рисунке 324.2 показана некоторая высота сжатой зоны сечения у, при которой нормальные напряжения σ будут прямо пропорциональны расстоянию от центра тяжести до рассматриваемой точки, это соответствует работе бетона в области условно упругих деформаций. При этом изменение деформаций можно рассматривать по зависимости, показанной на рисунке 324.2.а) или 324.2.б). Часто расчетами на прочность допускается наличие в сжатой области пластического шарнира, при котором изменяется эпюра напряжений и соответственно увеличивается значение деформаций:

изменение деформаций при пластическом шарнире

Рисунок 324.3

На основании этого для упрощения расчетов обычно принимается двухлинейная (рис. 324.3. а) или трехлинейная (рис. 324.3.б) диаграмма состояния сжатого бетона. Согласно СП 52.101.2003 трехлинейная диаграмма выглядит так:

трехлинейная диаграмма состояния сжатого бетона

Рисунок 324.4

где

εb1 = 0.6Rb,n/Eb1 (324.2)

Еb1 - при кратковременном действии нагрузки принимается равным Eb, а при длительном действии нагрузки определяется по следующей формуле:

Eb1 = Eb/(1 + φb,cr) (324.3)

где φb,cr - коэффициент ползучести бетона, определяемый в зависимости от класса бетона и влажности окружающей среды. Таким образом учитывается третий фактор, влияющий на модуль упругости бетона:

3. Влажность воздуха

Значение коэффициента ползучести определяется по следующей таблице:

Таблица 2. Коэффициенты ползучести бетона

коэффициент ползучести бетона

а значения деформаций εbo и εb2 при необходимости (если нормальные напряжения больше 0.6Rb,n) определяются по таблице 3:

Таблица 3. Относительные деформации бетона (согласно СП 52-101.2003)

относительные деформации бетона при длительной нагрузке

4. На значение модуля упругости бетона также влияют температура окружающей среды и интенсивность радиоактивного излучения.

Значение начальных модулей упругости, приведенных в таблице 1, соответствует температуре окружающей среды +20±5оС и нормальному радиационному фону. При изменении температуры в пределах ±20 от указанного значения влияние температуры на модуль упругости можно не учитывать. А при больших изменениях температуры следует учитывать еще и температурные деформации бетона. В целом уменьшение температуры приводит к увеличению модуля упругости, но и к повышению хрупкости материала, а увеличение температуры - к уменьшению модуля упругости и к увеличению пластичности материала.

А теперь попробуем выяснить, как все эти теоретические цифры можно применить на практике.

Определение значения модуля упругости

Имеется железобетонная прямоугольная плита перекрытия - шарнирно опертая бесконсольная балка размерами h = 20 см, b = 100 см; ho = 17.3 см; пролетом l = 5,6 м; бетон класса В15 (начальный модуль упругости Еb = 245000 кгс/см2; Rb,ser (Rb,n) = 112 кгс/см2, Rb = 85 кгс/см2); растянутая арматура класса А400 (Es= 2·106 кгс/см2) с площадью поперечного сечения As = 7.69 cм2 (5 Ø14); полная равномерно распределенная нагрузка q = 7,0 кг/см, сумма постоянных и длительных нагрузок ql = 6.5 кгс/см

1. Сначала выясним, какими будут параметры сечения при расчетном модуле упругости Еb1. Согласно формулы (324.3) и таблицы 2, при классе бетона В15 и при влажности 40-75%:

Eb1 = 245000/(1 + 3.4) = 55681 кгс/см2

2. Тогда высоту сжатой части приведенного сечения посредине балки можно найти, решив следующее уравнение:

у3 = 3As(ho - y)2Es/bEb1 (321.2.4)

Решение этого уравнения для рассматриваемой плиты даст уl/2 = 8.61 см.

Тогда приведенный момент сопротивления при такой высоте сжатой зоны сечения составит:

W = 2by2/3 = 2·100·8.612/3 = 4942.14 см3

3. Определим значение максимальных нормальных напряжений. Так как увеличение деформаций следует учитывать только при действии постоянных и длительных нагрузок, то значение момента от таких нагрузок составит:

σ = M/W = qll2/8W = 6.5·5602/(8·4942.14) = 51.56 кгс/см2 < 0.6Rb,n = 0.6·112 = 67.2 кгс/см2 (321.3.1)

Это означает, что для дальнейших расчетов плиты на действие длительных нагрузок можно использовать полученное значение модуля упругости бетона без каких-либо дополнительных поправок.

4. Расчетный момент инерции составит

Ip = W·y = 4942.14·8.61 = 42551.8 см4 (321.5)

5. Значение прогиба при действии постоянных и длительных нагрузок составит

f = k5ql4/384Eb1Ip = 0.93·5·6.5·5604/(384·55681·42551.8) = 3.27 см (321.6)

где k = 0.93 - коэффициент, учитывающий изменение высоты сжатой зоны поперечного сечения по длине балки. На первый взгляд это кажется странным, ведь когда мы определяли прогиб по начальному модулю упругости бетона и использовали коэффициент k = 0.86, то пригиб составлял 3.065 см, т.е. при использовании коэффициента k = 0.93 прогиб был бы даже больше и составлял 3.31 см. Однако ничего странного в этом нет. Объясню, почему.

При определении прогиба по начальному модулю упругости мы искусственно занизили значение высоты сжатой зоны из-за нарастания пластических деформаций в результате превышения расчетного сопротивления. В данном же случае уменьшение модуля упругости бетона означает увеличение высоты сжатой зоны, а кроме того, значение нормальных напряжений, как показал расчет, не превышает 0.6Rb,n.

В связи с этим разницу при определении приблизительного прогиба по начальному и расчетному модулям упругости бетона можно считать не существенной. Т.е. при определении приблизительного значения прогиба расчет можно выполнять как по начальному значению модуля упругости бетона, так и с учетом его изменения в результате действия длительной нагрузки. Вот в в принципе и все.

На главную домой

Категории:
Оценка пользователей: Нет
Переходов на сайт:3761
Комментарии:

Комментариев нет

Добавить свой комментарий:

Имя:

E-Mail адрес:

Комментарий:

Ваша оценка:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).




советы по строительству и ремонту



После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий к соответствующей статье.

Для терминалов номер Яндекс Кошелька 410012390761783

На всякий случай кошелек webmoney: R158114101090

Или: Z166164591614


Доктор Лом. Первая помощь при ремонте, Copyright © 2010-2016