На главную домой советы по ремонту квартиры
Поиск по сайту
Список кабинетов || Что это за доктор? || Записаться на прием

Основное меню


Технологии выполнения работ


Диагностика и лечение


Инженерные сети и коммуникации


Элементы конструкции


Расчет конструкций


Помещения


Встраиваемая техника


Строительные и отделочные материалы


Дизайн




Расчет двухпролетной балки с консолями

Двухпролетные балки являются статически неопределимыми конструкциями, хоть с консолями, хоть без. Рассчитываются такие балки с использованием метода сил или метода опорных моментов. Ничего особенно сложного в таких расчетах нет, тем не менее, если пролеты у балки одинаковые, то далеко не всегда есть желание проходить всю процедуру расчетов с учетом того, что для бесконсольных двухпролетных балок с равными пролетами все основные данные для расчета уже давно определены и ничего считать особенно не надо. К тому иногда длина консолей изначально не задается и если стоит задача подобрать соответствующую длину для консолей, то производить каждый раз соответствующие расчеты желание пропадает и вовсе.

В таких случаях можно воспользоваться таким полезным принципом, как принцип суперпозиции, смысл которого в том, что если на какую-либо конструкцию действует несколько нагрузок, то рассчитывать конструкцию на совместное действие нагрузок вовсе не обязательно. Можно рассчитать конструкцию на действие каждой отдельно взятой нагрузки, а затем полученные результаты сложить.

Например для двухпролетной бесконсольной балки с равными пролетами, на которую действует равномерно распределенная нагрузка, все основные расчетные данные уже давно определены. Достаточно в имеющиеся формулы подставить значения длины пролета и действующей нагрузки. В целом эпюра моментов для двухпролетной бесконсольной балки будет выглядеть так:

эпюра моментов для двухпролетной балки при действии равномерно распределенной нагрузки

Рисунок 346.1. Эпюра моментов для двухпролетной балки с равными пролетами при действии равномерно распределенной нагрузки.

При этом

МА = МС = 0 (1.1)

МВ = - ql2/8 (1.2)

A = C = 3ql/8 (1.3)

B = 10ql/8 (1.4)

Соотношение опорных реакций В/А = 10/3 = 3.33.

Между тем, если добавить к бесконсольной балке консоли и к этим консолям приложить такую же равномерно распределенную нагрузку, как и в пролетах, то эпюра изгибающих моментов изменит свой вид, да и значения опорных реакций изменятся. Как, мы сейчас и выясним.

Если двухпролетная балка имеет консоли длиной k, то в результате действия нагрузки на одну консоль возле опоры А будет действовать изгибающий момент:

МА = - qk2/2 (2.1)

В данном случае знак "-" означает, что растягивающие напряжения будут действовать в верхней части поперечных сечений балки на опоре. А еще в результате действия нагрузки на консоль будет возникать изгибающий момент и на опоре В.

Если нагрузка будет действовать только на одну из консолей, то согласно закономерностей, определенных при расчете балок методом моментов, значение момента на опоре В будет с обратным знаком и в 4 раза меньше значения момента на опоре А (если балка 1 раз статически неопределимая). Т.е. момент на опоре В будет равен:

МВ = qk2/8 (2.2)

А момент на опоре С будет равен нулю. Теперь нам ничто не мешает определить опорные реакции. Чтобы создать момент на опоре В, равный указанному, опорная реакция С должна быть равна:

С = МВ/l = qk2/8l (2.3)

тогда, чтобы получить на опоре А момент, равный указанному, исходя из уравнения моментов:

С2l + Bl = qk2/4 + Bl = - qk2/2 (2.4.1)

B = (- qk2/2 - qk2/4)/l = -3qk2/4l (2.4.2)

Тогда реакция на опоре А, исходя из условий равновесия системы:

А + В + С = qk (2.5.1)

A = qk - B - C = qk + 3qk2/4l - qk2/8l = qk + 5qk2/8l (2.5.2)

При этом эпюра моментов будет выглядеть так:

эпюра моментов для двухпролетной балки с одной загруженной консолью

Рисунок 346.2. Эпюра моментов для двухпролетной балки с одной загруженной консолью.

Проверим, не ошиблись ли мы где-нибудь в расчетах. Если составить уравнение моментов для крайнего левого сечения, то суммарный момент в этом сечении должен быть равен нулю. Для простоты расчетов примем значение k = l. Тогда

C3l - B2l + Al - ql2/2 = 3(ql2/8) - 2(6ql2/8) + 13ql2/8 - 4ql2/8 = 0 (2.6)

Тогда, если равномерно распределенная нагрузка действует на обе консоли, то 

МА = МС = - qk2/2 (3.1)

МВ = 2qk2/8 = qk2/4 (3.2)

A = C = qk + qk2/8l + 5qk2/8l = qk + 3qk2/4l (3.3)

B = 2(- 3qk2/4l) = -3qk2/2l (3.4)

При этом эпюра моментов для балки, у которой загружены обе консоли, будет выглядеть так:

эпюра моментов для балки с двумя консолями

Рисунок 346.3. Эпюра моментов для двухпролетной балки с двумя загруженными консолями.

Если у консолей балки есть некоторая вполне определенная длина, например, k = l/4, тогда для двухпролетной шарнирно опертой балки с двумя консолями, на которые действует равномерно распределенная нагрузка:

МА = МС = - ql2/(2·42) = - ql2/32 (4.1)

МВ = ql2/(4·42) = ql2/64 (4.2)

A = C = ql/4 + 3ql2/64l = 19ql/64 (4.3)

B = - 3ql2/32l = - 3ql/32 (4.4)

Соответственно, если равномерно распределенная нагрузка действует по всей длине балки, включая консоли, то

суммарная эпюра для двухпролетной балки с консолями

Рисунок 346.4. Суммарная эпюра моментов для балки с консолями загруженной по всей длине.

МА = МС = - ql2/(2·42) = - ql2/32 (5.1)

МВ = - ql2/8 + ql2/64 = - 7ql2/64 (5.2)

A = C = 3ql/8 + 19ql/64 = 43ql/64 (5.3)

B = 10ql/8 - 3ql/32 = 37ql/32 (5.4)

Соотношение опорных реакций в этом случае составляет В/А = 37·2/43 = 1.721.

Если длина консолей балки будет составлять k = l/3, тогда для двухпролетной шарнирно опертой балки с двумя консолями, на которые действует равномерно распределенная нагрузка:

МА = МС = - ql2/(2·32) = - ql2/18 (4.1)

МВ = ql2/(4·32) = ql2/36 (4.2)

A = C = ql/3 + 3ql2/36l = 16ql/36 (4.3)

B = - 3ql2/32l = - 3ql/18 (4.4)

Соответственно, если равномерно распределенная нагрузка действует по всей длине балки, включая консоли, то

МА = МС = - ql2/(2·42) = - ql2/18 (5.1)

МВ = - ql2/8 + ql2/36 = - 7ql2/36 (5.2)

A = C = 3ql/8 + 16ql/36 = 59ql/72 (5.3)

B = 10ql/8 - 3ql/18 = 78ql/72 (5.4)

Соотношение опорных реакций в этом случае составляет В/А = 78/59 = 1.322

Таким образом действие нагрузки на консоли балки приводит к появлению изгибающих моментов на опорах А и С и к уменьшению изгибающего момента на опоре В. Кроме того уменьшается разница между значениями опорных реакций. На основании полученных данных мы можем даже построить график, отражающий изменение соотношения В/А при изменении длины консоли:

изменение соотношения опорных реакций при изменении длины консоли балки

Рисунок 346.5.  График, отражающий изменение соотношения опорных реакций при изменении длины консоли.

А теперь несколько слов о том, зачем еще эти формулы могут понадобиться.

Например, вы рассчитываете сплошную фундаментную плиту, которая может рассматриваться как балка, у которой нагрузки от стен - это опорные реакции, а давление, оказываемое плитой на основание - это распределенная нагрузка. Так вот, если на плиту опираются 3 стены (2 наружных и одна внутренняя), то нагрузки от стен очень редко пропорциональны опорным реакциям для двухпролетной балки. Так как в реальности опоры балки могут перемещаться относительно вертикальной оси, проще говоря, фундамент будет проседать, то такое несоответствие между нагрузками от стен и опорными реакциями для балки будет приводить к тому, что плита просядет не равномерно.

Кроме того, поперечные сечения бесшарнирной балки на крайних опорах будут иметь некоторый угол наклона по отношению к горизонтальной оси. Это означает, что стены будут отклоняться от вертикали, что может привести к трещинам в стенах из натурального или искусственного камня, если не будут приняты соответствующие меры по усилению стен. Другими словами в стенах будут возникать горизонтальные растягивающие напряжения. А если нагрузка от внутренней стены будет меньше требуемой по расчету, то это приведет к дополнительному увеличению угла наклона на крайних опорах, а значит и к увеличению горизонтальных растягивающих напряжений. Кстати сказать, это относится и к сплошным фундаментным плитам, рассматриваемым как однопролетные балки.

В принципе определить прогиб или угол поворота - не проблема. Как известно, чем больше жесткость балки - тем меньше прогиб и угол поворота, однако это означает, что минимизация прогиба или угла поворота выльется в дополнительную толщину сплошной фундаментной плиты - бесконсольной балки, а устройство консолей соответствующей длины позволяет минимизировать угол поворота плиты  на крайних опорах и неравномерность проседания фундамента.

На главную домой

Категории:
Оценка пользователей: Нет
Переходов на сайт:2416
Комментарии:

Комментариев нет

Добавить свой комментарий:

Имя:

E-Mail адрес:

Комментарий:

Ваша оценка:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).




советы по строительству и ремонту



После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий к соответствующей статье.

Для терминалов номер Яндекс Кошелька 410012390761783

На всякий случай кошелек webmoney: R158114101090

Или: Z166164591614


Доктор Лом. Первая помощь при ремонте, Copyright © 2010-2016