На главную домой советы по ремонту квартиры
Поиск по сайту
Список кабинетов || Что это за доктор? || Записаться на прием

Основное меню


Технологии выполнения работ


Диагностика и лечение


Инженерные сети и коммуникации


Элементы конструкции


Расчет конструкций


Помещения


Встраиваемая техника


Строительные и отделочные материалы


Дизайн




Расчет деревянной балки перекрытия согласно СП 64.13330.2011

Деревянная балка перекрытия является изгибаемым элементом конструкции. Если балка цельная, сплошного прямоугольного или квадратного сечения, при этом устойчивость балки из плоскости изгиба обеспечена другими элементами конструкции, например лагами или досками, крепящимися к балками, то расчет такой балки будет относительно не сложным.

При расчете по первой группе предельных состояний - расчете на прочность - должны соблюдаться требования пп.6.9 и 6.10. При расчете по второй группе предельных состояний - расчете по деформациям - прогибы балки междуэтажного перекрытия не должны превышать значений, приведенных в таблице 19.

Вот собственно и все. А теперь рассмотрим расчет деревянной балки перекрытия более подробно на конкретном примере.

Итак планируется междуэтажное перекрытие по деревянным балкам для дома, имеющего следующий план:

план помещений второго этажа

Рисунок 515.1. План помещений второго этажа.

1. Общий Расчет балки перекрытия санузла на прочность

Для того, чтобы рассчитать деревянную балку на прочность согласно требований СП, следует сначала определить множество различных данных на основании общих положений расчета балок.

1.1. Виды и количество опор

Деревянные балки будут опираться на стены. Так как мы не предусматриваем никаких дополнительных мер, позволяющих исключить поворот концов балки на опорах, то опоры балки следует рассматривать, как шарнирные (рисунок 219.2).

расчетная схема для балки с шарнирными опорами

Рисунок 219.2.

Примечание: Так как концы балок, опирающиеся на каменные стены, для уменьшения риска гниения балок как правило обрабатывают гидроизоляционными материалами, имеющими относительно малый модуль упругости, при этом глубина заделки концов балки в стену не превышает 15-20 см, то даже если на опорные участки таких балок будет опираться каменная кладка, то это все равно не позволяет рассматривать такое опирание, как жесткое защемление.

1.2. Количество и длина пролетов

Согласно плану, показанному на рисунке 515.1, для перекрытия в санузле (помещение 2-1) длина пролета будет составлять около:

l = 4.18 - 0.4 = 3.78 м

При этом балки будут однопролетными, а значит статически определимыми.

1.3. Система координат

Расчет будем производить используя стандартную систему координат с осями х, у и z. При этом балка рассматривается как стержень, нейтральная ось которого совпадает с осью координат х, а начало координат совпадает с началом балки. Соответственно длина балки измеряется по оси х.

1.4. Действующие нагрузки

Все возможные расчетные плоские нагрузки для такого перекрытия мы уже собрали:

qрп = 212.46 кг/м2

qрв = 195 кг/м2

Примечание: при объемной чугунной ванне, установленной посредине балок перекрытия, расчетное значение временной нагрузки может быть значительно больше.

Однако такие значения нагрузок можно использовать только при расчете монолитного перекрытия. В нашем же случае балки перекрытия представляют собой крайние или промежуточные опоры для многопролетных балок - досок настила и остального пирога перекрытия.

Таким образом для более точного определения нагрузки на наиболее загруженную балку следует точно знать, доски какой длины будут использоваться в качестве настила по балкам. Если такого знания нет, то я рекомендую рассматривать наиболее неблагоприятный вариант, а именно - доски будут перекрывать 2 пролета, т.е. опираться на 3 балки перекрытия.

В этом случае наиболее нагруженной будет балка - промежуточная опора для таких досок - двухпролетных балок, соответственно значения нагрузок для такой балки следует увеличить в 10/8 = 1.25 раза или на 25%, тогда:

qрп = 212.46·1.25 = 265.58 кг/м2

qрв = 195·1.25 = 243.75 кг/м2

Если доски будут перекрывать 3 пролета, то значения нагрузок следует увеличить в 1.1 раза (253.4.4). При 4 пролетах - в 8/7 = 1.15 раза (262.7.10) и так далее, тем не менее остановимся на первом варианте, так оно надежнее.

Так как на рассчитываемое перекрытие действует только одна кратковременная нагрузка (особые нагрузки типа взрывной волны или землетрясения мы для нашего перекрытия не предусматриваем), то при рассмотрении основного сочетания нагрузок используется полное значение кратковременной нагрузки согласно СП 20.13330.2011 "Нагрузки и воздействия" п.1.12.3, тогда:

qр = 265.58 + 243.75 = 509.33 кг/м2

Так как балки рассчитываются не на плоскую, а на линейную нагрузку, то при шаге балок 0.6 м расчетная линейная нагрузка на балку составит:

qрл = 509.33·0.6 = 305.6 кг/м

1.5. Определение опорных реакций и максимального изгибающего момента

Так как загружение балки равномерно распределенной нагрузкой - достаточно распространенный частный случай, то для определения опорных реакций можно воспользоваться готовыми формулами:

А = В = ql/2 = 305.6·3.78/2 = 577.6 кг

Мmax = ql2/8 = 305.6·3.782/8 = 545.82 кгм или 54582 кгсм

1.6. Построение эпюр поперечных сил и изгибающих моментов

В нашем частном случае, когда нагрузка является равномерно распределенной, можно опять же воспользоваться готовыми эпюрами, благо их для такого случая построено уже множество:

эпюры сил и моментов при распределенной нагрузке

Рисунок 149.7.2. Эпюры поперечных сил и моментов, действующих в поперечных сечениях 

Для большей наглядности можно нанести полученные значения поперечных сил (опорные реакции - это и есть значения поперечных сил в начале и в конце балки) и максимального изгибающего момента на эпюры.

Примечание: В данном случае эпюра моментов помечена знаком минус, просто потому, что откладывается снизу от оси координат х. А вообще знак для моментов принципиального значения не имеет, так как при действии момента всегда есть и растянутая и сжатая зона поперечного сечения. Таким образом наиболее важно понимать, где при действии момента будет растянутая, а где сжатая зона сечения. Впрочем для деревянных балок это большого значения не имеет.

1.7. Определение требуемого момента сопротивления

Согласно СП 64.13330.2011 "Деревянные конструкции" п.6.9 расчет изгибаемых элементов, обеспеченных от потери устойчивости плоской формы деформирования, следует производить, исходя из следующего условия:

M/Wрасч ≤ Rи (или Rид.ш.) (533.1)

где М - расчетное значение изгибающего момента. В нашем случае (для балки постоянного сечения при действии равномерно распределенной нагрузки) достаточно проверить балку на действие максимального изгибающего момента. В общем случае при достаточно сложной комбинации различных нагрузок или для балок переменного сечения могут потребоваться проверки на прочность в нескольких сечениях. Для определения момента в этих сечениях и используется эпюра моментов.

Rи - расчетное сопротивление древесины изгибу. Определение расчетного сопротивления древесины в зависимости от различных факторов - отдельная большая тема. В данном случае ограничимся тем, что при использовании балок из цельной древесины - сосны 2 сорта расчетное сопротивление изгибу для балок перекрытия санузла может составлять Rи = 113.3 кгс/см2.

Rид.ш. - расчетное сопротивление для элементов из однонаправленного шпона, но так как в данном случае мы рассматриваем балку из цельной древесины, то возможные значения клееных элементов нас не интересуют

Wрасч - расчетный момент сопротивления рассматриваемого поперечного сечения. Для элементов из цельной древесины Wрасч = Wнт, где Wнт - момент сопротивления рассматриваемого сечения с учетом возможных ослаблений - момент сопротивления нетто.

Так как для рассчитываемых балок не предусматривается никаких ослаблений в зоне максимального загружения (гвозди крепления досок перекрытия не в счет), то требуемый по расчету момент сопротивления поперечного сечения балки можно определить, преобразовав соответствующим образом формулу (533.1):

Wрасч ≥ М/Rи = 54582/113.3 = 481.73 см3

1.8. Определение геометрических параметров сечения

Так как мы предварительно приняли прямоугольное поперечное сечение балок, имеющее размеры b - ширину и h - высоту, то задавшись значением одного из этих параметров, мы можем определить значение другого.

Если принять ширину балок 10 см, исходя из сортамента производимых в ближайших окрестностях лесоматериалов, то требуемую высоту поперечного сечения можно определить по формуле:

формула расчета высоты балки при известной ширине и моменте сопротивления (147.4)

hтр = √6·481.73/10 = 17 см.

Исходя из все того же сортамента, высоту балок следует принять не менее 20 см. Также можно уменьшить шаг балок, например при шаге балок 0.45 м значение расчетного момента сопротивления составит не менее

Wрасч = 0.5·481.73/0.6 = 361.3 см3

и тогда минимально допустимая высота сечения

hтр = √6·361.3/10 = 14.72 см.

А значит можно принять высоту балок равной 15 см. Впрочем, возможны и другие варианты подхода, например, более точно учесть количество пролетов, перекрываемых досками, это позволит уменьшить значение нагрузки на 10-15%.

2. Определение прогиба

Так как для однопролетных балок с шарнирными опорами значение прогиба может стать определяющим, то я рекомендую определять прогиб сразу после определения параметров сечения.

При действии равномерно распределенной нагрузки на однопролетную балку с шарнирными опорами значение прогиба без учета влияния поперечных сил можно определить по следующей формуле:

f0 = 5ql4/(384EI)

где q - нормативное значение нагрузки.

Значения плоских нормативных нагрузок, необходимые для определения прогиба, мы уже определили при сборе нагрузок. Они составляют:

qнп = 171.6 кг/м2

qнв = 150 кг/м2

Соответственно с учетом шага балок 0.6 м и перераспределения опорных нагрузок линейная нормативная нагрузка составляет:

qнл = 0.6·1.25(171.6 + 150) = 241.2 кг/м (2.412 кг/см)

Е = 105 кгс/см2, модуль упругости древесины, принимаемый по СП 64.13330.2011 "Деревянные конструкции".

I = bh3/12 = 10·203/12 = 6666.67 см4, - момент инерции рассматриваемого прямоугольного сечения балки.

Тогда

f0 = 5·2.412·3784/(384·105·6666.67) = 0.962 см

При действии равномерно распределенной нагрузки на балку значение коэффициента с, учитывающего влияние поперечных сил на значение прогиба, составит согласно таблицы Е.3

с = 15.4 + 3.8β (533.2)

Так как высота балки у нас постоянная величина, то β =1 = k и соответственно

с = 15.4 + 3.8 = 19.2

 Тогда при высоте балки h = 0.2 м и пролете l = 3.78 м (h/l = 0.053) значение прогиба с учетом поперечных сил составит:

f = fo[1 + c(h/l)2]/k = 0.962[1 + 19.2·0.0532]/1 = 1.01 см

Предельно допустимое значение прогиба деревянных балок междуэтажного перекрытия согласно таблицы 19 СП 64.13330.2011 "Деревянные конструкции" составляет fд = l/250 = 387/250 = 1.55 см.

Необходимые требования по максимально допустимому прогибу нами соблюдены, мы можем продолжать расчет.

1.9. Проверка по касательным напряжениям (прочность по скалыванию)

При изгибе в сечениях, поперечных и параллельных нейтральной оси балки, будут действовать касательные напряжения. В деревянных балках это может привести к скалыванию древесины вдоль волокон. поэтому касательные напряжения т не должны превышать расчетного сопротивления Rск скалыванию:

т = QS'бр/bрасIбр ≤ Rск (Rскд.ш.) (533.3)

где Q - значение поперечной силы в рассматриваемом поперечном сечении, определяемое по эпюре моментов. В нашем случае максимальные касательные напряжения будут действовать на опорах балки, Q = 557.6 кг

S'бр - статический момент брутто (т.е. без учета возможных ослаблений сечения) сдвигаемой (скалываемой) части сечения. Статический момент определяется относительно нейтральной оси балки.

bрас - расчетная ширина сечения рассматриваемого элемента конструкции. В данном случае у нас ширина балки равна bрас = 10 см.

Rск - расчетное сопротивление древесины скалыванию. Как и при определении расчетного сопротивления изгибу значение, определенное по таблице 3, следует дополнительно умножить на ряд коэффициентов, учитывающих различные факторы. Впрочем факторы у нас не изменились и потому согласно п.5.а) и определенным ранее коэффициентам расчетное сопротивление скалыванию составит:

Rск = 1.6·0.9·0.95 = 1.368 МПа (13.95 кгс/см2)

Iбр - момент инерции брутто, т.е. опять же определяемый без учета возможных ослаблений сечения. В данном случае момент инерции брутто совпадает с определенным ранее моментом инерции.

Впрочем, для балок прямоугольного сечения нет большой необходимости при подобных расчетах определять как статический момент полусечения, так и момент инерции. По той причине, что максимальные касательные напряжения действуют посредине высоты балки и составляют:

т = 1.5Q/F (270.3)

Тогда

т = 1.5·557.6/(10·20) = 4.182 кг/см2 < 13.95 кг/см2

Требование по прочности по скалыванию соблюдается, причем с 3-х кратным запасом.

На этом расчет деревянной балки постоянного сплошного сечения, устойчивость которой из плоскости изгиба обеспечена другими элементами конструкции, можно считать законченным. Во всяком случае никаких дополнительных требований Сводом Правил в таких случаях не предъявляется.

Тем не менее я рекомендую дополнительно проверить опорные участки балки

1.10. Проверка на прочность опорных участков балки

Любая балка в отличие от показанной на рисунке 219.2 модели имеет опорные участки. На этих опорных участках действуют нормальные напряжения в сечениях, параллельных нейтральной оси балки.

Распределение нормальных напряжений на этом участке зависит от множества различных факторов, в частности от угла поворота поперечного сечения балки на опоре, длины опорных участков и т.п.

Если для упрощения расчетов принять линейное изменение нормальных напряжений от максимума до 0, то примерное значение максимальных нормальных напряжений на опорных участках можно определить по следующей формуле:

σу = 2Q/(blоп) ≤ Rcм90 (533.4)

где Q - значение поперечной силы согласно эпюры "Q", как и прежде оно составляет Q = 557.6 кг;

b - ширина балки b = 10 см;

lоп - длина опорного участка, из конструктивных соображений примем lоп = 10 см;

2 - коэффициент учитывающий неравномерность распределения напряжений на опорном участке;

Rcм90 - расчетное сопротивление смятию поперек волокон. Согласно п.4.а) таблицы 3 и с учетом поправочных коэффициентов расчетное сопротивление смятию поперек волокон составит:

Rсм90 = 4·0.9·0.95 = 3.42 МПа (34.8 кгс/см2)

Тогда

2·557.6/(10·10) = 11.15 кг/см2 < 34.8 кг/см2

Как видим условие по прочности на опорных участках также соблюдается и снова с хорошим 3-х кратным запасом.

И теперь расчет балки перекрытия санузла можно действительно считать законченным.

Дополнительные проверки на прочность в местах действия сосредоточенных нагрузок здесь не требуются как минимум потому, что при принятой расчетной схеме сосредоточенные нагрузки отсутствуют. Да и рассматривать плоское напряженное состояние балки для определения максимальных напряжений при постоянном сплошном прямоугольном сечении балки и принятой схеме нагрузок и опор на мой взгляд также не требуется.

На главную домой

Категории:
Оценка пользователей: Нет
Переходов на сайт:1
Комментарии:

Комментариев нет

Добавить свой комментарий:

Имя:

E-Mail адрес:

Комментарий:

Ваша оценка:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).




советы по строительству и ремонту



После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий к соответствующей статье.

Для терминалов номер Яндекс Кошелька 410012390761783

На всякий случай кошелек webmoney: R158114101090

Или: Z166164591614


Доктор Лом. Первая помощь при ремонте, Copyright © 2010-2017