Конечно же язык математики невероятно прост и универсален, пример тому - выше приведенное уравнение (538.1), прочитать которое сможет любой грамотный гражданин нашей планеты вне зависимости от того, на каком языке он разговаривает. А вот что означает данное уравнение, мы сейчас и попробуем выяснить.
Начнем с элементарного:
Неизвестная величина
Как правило жизнь ставит перед нами не очень сложные задачи и решаем мы их с легкостью. Например: если один пирожок стоит 3 рубля, а мы хотим купить 2 пирожка, то сколько для этого нам потребуется денег?
Ответ на первый взгляд очевиден и вроде бы никакого особого решения не требует: 6 рублей. Но давайте подойдем к этой ситуации с точки зрения математики и запишем соответствующие уравнения сначала с необходимыми пояснениями в скобках:
х (требуемое количество денег) = 2 (пирожка) · 3 (рубля/пирожок) (538.2.1)
х (требуемое количество денег) = 6 (рублей) (538.2.2)
При умножении пирожки сокращаются и остаются только рубли. Если использовать чистую математическую запись, т.е. без пояснения в скобках, то это будет выглядеть так:
х = 2 · 3 (538.3.1)
х = 6 (538.3.2)
В данном случае неизвестное изначально количество денег, необходимых для покупки 2 пирожков - это и есть та самая неизвестная величина х, которую нам нужно определить.
Как правило в начальных классах школы на этом даже акцент не делается, детям просто предлагаются к решению задачи по определению неизвестной величины в виде:
5 + 2, определите сумму (538.4.1)
или
9 : 3, определите частное (538.4.2)
Но на мой взгляд это не правильно. Детей, начиная с начальных классов, следует готовить к определению неизвестной величины и в подобных случаях формулировка задания должна выглядеть примерно так:
5 + 2 = х или х = 5 + 2 - сделайте неизвестную величину х известной (538.4.1.2)
9 : 3 = х или х = 9 : 3 - определите неизвестную величину х (538.4.2.2)
Постоянная неизвестная величина
В приведенных выше уравнениях (538.3 и 4) неизвестная величина х может иметь только одно значение. Поэтому такая величина называется постоянной (хотя варианты обсчета продавцом не исключены, но к теме данной статьи это никак не относится).
При этом уравнений, при решении которых требуется определить эту самую постоянную неизвестную величину, может быть бесконечное количество. Вот только на решение этих самых уравнений это никак не влияет.
Если в уравнении, каким бы сложным оно ни было, есть только одна неизвестная величина, то такая величина является постоянной.
Вообще-то постоянные неизвестные величины более правильно обозначать литерами а, b, c и др. Впрочем в уравнениях с одной неизвестной, а потому постоянной величиной это большого значения не имеет и неизвестная величина часто обозначается литерой х.
Переменные неизвестные величины
Иногда жизнь ставит перед нами более сложные задачи. Например, мы по-прежнему хотим купить 2 пирожка, но еще не определились с выбором, так как пирожков с различной начинкой на рынке много и цена у них разная, от 3 до 30 рублей, а денег в кармане мало.
В этом случае с точки зрения математики разная цена пирожков становится переменной величиной х, а требуемая сумма денег для покупки пирожков - переменной величиной у, зависящей от значения переменной х. Языком математики эту зависимость можно выразить так:
у = 2 · х (538.5)
Т.е если один пирожок стоит 3 рубля, то нам для приобретения 2 пирожков потребуется как и прежде 6 рублей, а если мы хотим купить 2 пирожка, стоящих по 30 рублей каждый, то нам потребуется уже 60 рублей. Это конечно еще не высшая математика, но очень близко к тому.
В данном случае переменная х - возможная цена пирожка - это аргумент функции (или аргумент продавца, расхваливающего различные начинки пирожков). От нашего желания купить пирожков побольше и подешевле цена никак не зависит, поэтому переменная х является независимой переменной. А вот переменная у - необходимое количество денег, которое мы готовы потратить на покупку 2 пирожков, зависит и от нашего желания сэкономить и от значения переменной х.
Часто переменные величины называются просто переменными, а уравнения с двумя переменными - функциональными уравнениями.
Область определения функции
Как правило простые уравнения с одной неизвестной постоянной величиной вида (538.4.1.2) имеют только одно решение. В уравнениях с двумя неизвестными вида (538.5) решений может быть столько, сколько существует возможных значений переменной х. Т.е. если на рынке есть пирожки с 10 различными ценами, то нам, чтобы определить все возможные значения у, нужно решить уравнение (538.5) 10 раз, а если пирожки со 100 различными ценами, то 100 раз.
А все это ценовое разнообразие от 3 до 30 рублей и будет областью определения функции
Примечание: Вообще в данном случае возможно еще большее ценовое разнообразие, если цена пирожков будет изменяться с шагом в 1 копейку.
При этом минимальная цена - 3 рубля за пирожок - будет нижним пределом функции, а максимальная - 30 рублей за пирожок - верхним пределом функции.
Функция
Даже такие относительно простые уравнения как (538.5), решать 100 раз очень долго. А ведь уравнения бывают гораздо более сложными, а область определения практически бесконечной.
Для таких случаев и придумано понятие функции. Т.е. функция - это не только обозначение связи между неизвестными переменными, но еще и как бы обозначение действий, которые необходимо совершить для определения значения функции. Возможно поэтому и выбрано название "функция", от латинского functio - исполнение, совершение, осуществление.
При этом математическая запись следующего вида:
у = f(x) = x · 2 (538.5.2)
означает, что у является функцией аргумента х, а для определения значения функции - переменной у - достаточно значение аргумента функции - независимой переменной х - умножить на 2.
График функции
А еще это означает, что решать уравнение для всех возможных значений х нет необходимости. Для функции можно построить график, т.е. отобразить зависимость у от х визуально. Для этого используется плоская система координат с осями х и у. Соответственно по оси х откладывается значение переменной х, а по оси у значение переменной у, определенной для этого значения х.
В простых случаях, т.е. когда между переменными существует линейная зависимость, для построения графика достаточно знать координаты 2 точек. Например для функции f(x) = 2х в пределах от 0 до 4 график будет выглядеть так:

Рисунок 538.1. График функции f(x) = 2x.
Сначала мы определяем значения функции для нижнего (х = 0) и верхнего (х = 4) пределов: f(0) = 2·0 = 0, f(4) = 2·4 = 8. Эти результаты и будут координатами точек (показаны на рисунке 538.1 красным цветом), через которые проходит график функции. Прямая, соединяющая эти точки (показана на рисунке 538.1 синим цветом) - это и есть график рассматриваемой функции.
Таким образом, для всех промежуточных значений х, а это могут быть не только натуральные (т.е. целые) числа, мы можем определять значения у по графику. Для этого достаточно провести вертикальную линию из точки, обозначающей значение х, до графика (показан на рисунке 538.1 синей линией), а затем провести горизонтальную линию из точки пересечения вертикальной линии и графика. Пересечение горизонтальной линии с осью у покажет значение переменной у для соответствующего значения х. На рисунке 538.1 подобные действия не показаны, чтобы не усложнять график.
Более того, понятие функции применимо и к простым уравнениям, содержащим только одну неизвестную, а потому постоянную величину, и для таких уравнений тоже можно построить график. Например, уравнение у = 7 - 2 можно записать так: у = f(x) = 5 и тогда графиком функции будет прямая горизонтальная линия, проходящая на высоте 5 делений от оси х.
А теперь несколько слов о том, зачем все это может понадобиться например при изучении теоретической механики или теории сопротивления материалов.
При расчете строительных конструкций, например балок, необходимо определить значение поперечных сил и моментов, действующих в различных сечениях балки, а также углы поворота и перемещения нейтральной оси балки. Для этого строятся эпюры поперечных сил, моментов, углов поворота и прогиба. Так вот эти эпюры и есть графики соответствующих функций.
При этом длина балки l измеряется по оси х, соответственно нижний предел функции х = 0, а верхний предел функции х = l.
Например уравнение моментов М(х) = qlx/2 - qx2/2 при действии на балку равномерно распределенной нагрузки в обще виде можно записать так:
у = f(x) = qlx/2 - qx2/2 (538.6)
Но на этом увлекательный мир уравнений, а также функций, их аргументов и т.п. не заканчивается, а только начинается. Следующий уровень сложности - это дифференциальные уравнения, когда одна из неизвестных величин является производной или дифференциалом второй неизвестной величины, но это уже отдельная большая тема. |