На главную домой советы по ремонту квартиры
Список кабинетов             Что это за доктор?             Записаться на прием

Определение прогиба деревянной балки согласно СП 64.13330.2011

Согласно требований п, 6.35 СП 64.13330.2011 "Деревянные конструкции" (Актуализированная редакция СНиП II-25-80) при определении прогиба деревянных балок необходимо учитывать влияние касательных напряжений (поперечных сил, действующих в поперечных сечениях балки).

На первый взгляд данное требование вполне разумное, так как касательные напряжения действительно влияют на величину прогиба. Вот только влияние это очень сильно зависит от отношения высоты балки к длине.

Конечно же, будь моя воля, я бы, перед тем как приводить формулу для определения прогиба изгибаемых элементов с учетом действия поперечных сил, сначала привел бы упрощенную формулу определения прогиба с соответствующим пояснением, что ей можно пользоваться для приблизительного определения прогиба при соотношениях высоты балки к длине h/l < 20.

Тем не менее, к разработке и составлению указанного Свода Правил я никакого отношения не имею, да и вообще до такого уровня просто еще не дорос. А потому считаю, что требования СП следует безусловно выполнять, а как именно это сделать, мы сейчас и узнаем.

Формула для определения прогиба с учетом действия поперечных сил, приведенная в СП, имеет следующий вид:

f = fo[l + c(h/l)2]/k (544.1)

где f0 - значение прогиба, определяемое без учета действия касательных напряжений, т.е. по упрощенной формуле. Формулы для определения прогиба статически определимых балок можно посмотреть здесь. Впрочем для определения прогиба некоторых видов статически неопределимых балок формулы также имеются.

с - коэффициент, учитывающий влияние поперечных сил на прогиб (о том, как определить этот коэффициент, мы поговорим чуть позже).

k - коэффициент, учитывающий возможное изменение высоты сечения по длине балки. При постоянной высоте k = 1.

При этом h - высота поперечного сечения балки, l - длина пролета балки.

Что лично мне не нравится в формуле (544.1)? Только одна маленькая деталь - наличие в квадратных скобках абсолютной величины - длины балки l.

На мой взгляд это делает данную формулу совершенно бессмысленной, так как определяя прогиб f0, измеряемый хоть в метрах хоть в сантиметрах, и умножая его на длину, измеряемую в тех же метрах или сантиметрах, мы получим какую-то абстрактную величину, измеряемую то ли в м2 то ли в см2. Между тем прогиб всегда имеет линейную размерность, т.е. измеряется или в метрах или в сантиметрах.

Полагаю, что это просто опечатка и вместо длины l в формуле должна стоять единица - (действительно 1 и l очень легко спутать). Кроме того, из общих положений теории сопротивления материалов следует, что в общем случае при учете влияния поперечных сил формула для определения прогиба (например, при действии сосредоточенной нагрузки на конце консольной балки) имеет следующий вид:

- fl = Ql3(1 + λ)/3EI (536.13)

где

λ = k(1 + μ)h2/2l2 (536.12)

И тогда коэффициент с это:

с = k(1 + μ)/2 (544.2) 

Мне кажется, что это является еще одним подтверждением того, что формула, приведенная в СП, как впрочем и в старом СНиПе, неправильная. А правильный вариант этой формулы должен иметь следующий вид:

f = fo[1 + c(h/l)2]/k (544.1.2)

Тем не менее, как я уже говорил, я не являюсь ни составителем, ни разработчиком указанных нормативных документов, а потому мое мнение - это всего лишь мнение некоего частного лица, учитывать которое не обязательно.

Если у вас получается определить прогиб деревянной балки по приведенной в Своде Правил формуле, то - вперед! Не обращайте на мои сомнения внимания. Ну а для сомневающихся я бы все-таки предложил формулу (544.1.2). Осталось только выяснить, чему же равен коэффициент с.

Древесина не является изотропным материалом. Например значение модуля упругости древесины вдоль и поперек волокон отличается на порядок, чуть ли не на два, и потому для определения значения коэффициента с конечно же следует пользоваться не общими положениями теории сопротивления материалов, а рекомендациями СП.

Так значение коэффициента с следует определять по таблице Е.3 обязательного приложения Е:

Таблица Е.3. Значения коэффициентов k и с для определения прогибов балок с учетом переменности сечений и деформаций сдвига

коэффициенты k и с для определения прогибов деревянных балок прямоугольного сечения

продолжение таблицы коэффициентов k и с

Тут может возникнуть дополнительный вопрос: а как определить значение коэффициента β, который присутствует чуть ли не во всех формулах данной таблицы?

СП на этот вопрос прямого ответа не дает, однако по контексту таблицы можно догадаться, что

β = h0/h (544.3)

где h - максимальная высота балки (как правило посредине пролета), h0 - высота балки в начале и(или) конце пролета.

Соответственно βh = h0. Так же из приведенной таблицы становится понятным и то, почему при постоянной по всей длине балки высоте сечения, т.е. при β = 1, коэффициент, учитывающий возможное изменение высоты сечения балки, также равен единице -  k = 1.

Конечно же в представленной таблице Е.3 представлены далеко не все возможные случаи загружения балок. Как поступать в случаях, когда на балку действуют другие нагрузки, например несимметичные распределенные или сосредоточенные, в СП опять же не объясняется.

Я считаю, что в таких случаях действующие нагрузки следует привести к эквивалентным симметричным равномерно распределенным или сосредоточенным, но это опять же лишь мое личное мнение.

В целом прогиб, определяемый расчетом, должен быть не больше допустимого:

f ≤ fд (544.4)

Значение допустимого прогиба определяется по таблице 19:

Таблица 19

допустимые прогибы для деревянных балок

Вот собственно и все, что мне хотелось сказать по поводу определения прогиба согласно требований СП 64.13330.2011 "Деревянные конструкции" (Актуализированная редакция СНиП II-25-80). Конкретные примеры определения прогиба деревянных балок приводятся отдельно.

На главную домой

Категории:
Оценка пользователей: Нет
Переходов на сайт:1
Комментарии:

Комментариев нет

Добавить свой комментарий:

Имя:

E-Mail адрес:

Комментарий:

Ваша оценка:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).




советы по строительству и ремонту



Яндекс.Метрика

После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий к соответствующей статье.

Для терминалов номер Яндекс Кошелька 410012390761783

Или на карту 5106 2110 0462 8702 Получатель SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7423 0569 0962 Получатель Гутов Сергей Михайлович

На всякий случай кошелек webmoney: R158114101090

Или: Z166164591614


Доктор Лом. Первая помощь при ремонте, Copyright © 2010-2017